Functional constraints on HIV-1 capsid: their impacts on the viral immune escape potency
نویسندگان
چکیده
In mature HIV-1 particles, viral capsid (CA) proteins form the conical core structure that encapsidates two copies of the viral RNA genome. After fusion of the viral envelope and cellular membranes, the CA core enters into the cytoplasm of the target cells. CA proteins then interact with a variety of viral other protein as well as host factors, which may either support or inhibit replication of the virus. Recent studies have revealed that CA proteins are important not only for the uncoating step but also for the later nuclear import step. Identification of proteins that interact with CA to fulfill these functions is, therefore, important for understanding the unknown HIV-1 replication machinery. CA proteins can also be targets of the host immune response. Notably, some HLA-restricted cytotoxic T-lymphocyte (CTL) responses that recognize CA functional regions can greatly contribute to delay in AIDS progression. The multi-functionality of the CA protein may limit the flexible virus evolution and reduce the possibility of an escape mutant arising. The presence of many functional regions in CA protein may make it a potential target for effective therapies.
منابع مشابه
HIV-1 viral escape in infancy followed by emergence of a variant-specific CTL response.
Mutational escape from the CTL response represents a major driving force for viral diversification in HIV-1-infected adults, but escape during infancy has not been described previously. We studied the immune response of perinatally infected children to an epitope (B57-TW10) that is targeted early during acute HIV-1 infection in adults expressing HLA-B57 and rapidly mutates under this selection ...
متن کاملMolecular and functional analysis of a conserved CTL epitope in HIV-1 p24 recognized from a long-term nonprogressor: constraints on immune escape associated with targeting a sequence essential for viral replication.
It has been hypothesized that sequence variation within CTL epitopes leading to immune escape plays a role in the progression of HIV-1 infection. Only very limited data exist that address the influence of biologic characteristics of CTL epitopes on the emergence of immune escape variants and the efficiency of suppression HIV-1 by CTL. In this report, we studied the effects of HIV-1 CTL epitope ...
متن کاملNonhuman TRIM5 Variants Enhance Recognition of HIV-1-Infected Cells by CD8+ T Cells
UNLABELLED Tripartite motif-containing protein 5 (TRIM5) restricts human immunodeficiency virus type 1 (HIV-1) in a species-specific manner by uncoating viral particles while activating early innate responses. Although the contribution of TRIM5 proteins to cellular immunity has not yet been studied, their interactions with the incoming viral capsid and the cellular proteasome led us to hypothes...
متن کاملDynamics of Viral Evolution and CTL Responses in HIV-1 Infection
Improved understanding of the dynamics of host immune responses and viral evolution is critical for effective HIV-1 vaccine design. We comprehensively analyzed Cytotoxic T-lymphocyte (CTL)-viral epitope dynamics in an antiretroviral therapy-naïve subject over the first four years of HIV-1 infection. We found that CTL responses developed sequentially and required constant antigenic stimulation f...
متن کاملDynamic allostery governs cyclophilin A-HIV capsid interplay.
Host factor protein Cyclophilin A (CypA) regulates HIV-1 viral infectivity through direct interactions with the viral capsid, by an unknown mechanism. CypA can either promote or inhibit viral infection, depending on host cell type and HIV-1 capsid (CA) protein sequence. We have examined the role of conformational dynamics on the nanosecond to millisecond timescale in HIV-1 CA assemblies in the ...
متن کامل